Today's PICK UP

AIが診断サポートに加え医師が注目するべき部位まで説明してくれる「心電図解析AI」が開発

株式会社カルディオインテリジェンスは、同社の共同研究チームは、人工知能(AI)におけるニューラルネットワークの表現能力を応用して、心電図検査においてAIを用いた不整脈の検出およびAIが利用者に検出根拠を説明する手法を開発し、その研究成果が2021年5月29日付でInternational Heart Journal誌にオンライン公開されたと発表した。
本研究成果は、臨床現場における医療機器AIとしての活用を可能にするだけでなく、AIを扱う医師が医療現場においてAIを信頼して用いる事にも貢献することが期待されるという。なお本研究は国際医療福祉大学医学部循環器内科および立命館大学情報理工学部創発システム研究室との共同研究で行われた。

■背景

同社は、AIを用いた心電図解析ソフトウェアの臨床現場における実用化と普及を目指して開発を進めている。従来、ニューラルネットワークをはじめとするディープラーニング技術を用いたAIは、なぜAIがその結果を示すことになったかの根拠を示すことができないブラックボックス性が問題だった。そこで、本研究チームはニューラルネットワークを用いて心電図解析を行うAIについて、使用する医療者に対してAIが検出した根拠を示す技術の開発を行ったとのことだ。

■研究手法と成果

AI-ディープラーニング技術の代表的手法である畳み込みニューラルネットワークを用いた心電図波形の解析に関しては、ここ数年でいくつか報告がされているが、本研究では長時間心電図(ホルター心電図)検査の波形を対象にしたAI心電図解析プログラムの開発を行った。開発に用いた心電図波形の件数は57,273件あり、そのデータに心臓専門医が行った診断データを学習データとして用いた。このAIプログラムの性能評価を行ったところ、代表的な不整脈である心房細動検出精度は、感度97.1%、特異度94.5%、精度95.3%であり、検出精度は心臓専門医に匹敵するものだったという。さらにディープラーニング技術を応用して構築した、説明をしてくれるAI(以下、説明可能AI)が提示する検出根拠部位(図1)の精度を評価したところ、AIが提示した検出根拠部位の94.5%は心臓専門医の目で見て妥当な部位であることが明らかになったとのことだ。

図1:赤い部分が説明可能AIが提示した心房細動の検出根拠部位
心房細動に特徴的な細動波と呼ばれる異常部位を認識していることが分かる (原論文より改変引用)
出典元:プレスリリース

■今後の期待

これまでのディープラーニング技術を用いたヘルスケアにおけるAIは、そのブラックボックス性が利用にあたっての大きな課題だったという。今回開発に成功した説明可能AIは、今後AIを使用する医療者が安心してAIを診断サポートとして活用するためには必須の技術とのことだ。AIが診断サポートだけではなく、医師が注目するべき部位まで説明してくれる技術を取り入れることにより、専門医でなくとも精密検査や的確な診断を行うことが可能になる。このことで増加する心臓病の早期診断を可能にすることで、より多くの患者の医療福祉に貢献することが期待できるとのことだ。
出典元:プレスリリース

人気記事

マツダの天才エンジニアとして知られた人見氏が本音で語るDX!Appleなど巨大テック企業が参入するなか、日本の自動車メーカーの生き残り戦略とは?

マツダの天才エンジニアとして知られた人見氏が本音で語るDX!Appleなど巨大テック企業が参入するなか、日本の自動車メーカーの生き残り戦略とは?

100年に一度の大変革期を迎えている自動車業界。そのなかで日本の自動車メーカーの行く末に「猛烈な危機感がある」と明かすのは、かねてよりマツダの天才エンジニアとして知られ、現在はシニアイノベーションフェローを務める人見 光夫氏だ。Appleをはじめとした巨大テック企業たちが自動車業界への参入をこぞって表明する今、既存の自動車メーカーが生き残りをかけて望むデジタルシフト戦略とは。ここでしか聞けない、本音が満載のインタビューです。